• O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Yu, Y. et al. Telecom-band quantum dot technologies for long-distance quantum networks. Nat. Nanotechnol. 18, 1389–1400 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Le Jeannic, H. et al. Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide. Phys. Rev. Lett. 126, 023603 (2021).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Le Jeannic, H. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Gangloff, D. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gangloff, D. A. et al. Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photon. Rev. 10, 870–894 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Papon, C. et al. Independent operation of two waveguide-integrated quantum emitters. Phys. Rev. Appl. 19, L061003 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tiranov, A. et al. Collective super-and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Jöns, K. D. et al. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources. J. Phys. D: Appl. Phys. 48, 085101 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Katsumi, R. et al. Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing. APL Photonics 4, 036105 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Katsumi, R. et al. In situ wavelength tuning of quantum-dot single-photon sources integrated on a CMOS-processed silicon waveguide. Appl. Phys. Lett. 116, 041103 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 031009 (2015).


    Google Scholar
     

  • Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Elshaari, A. W. et al. Strain-tunable quantum integrated photonics. Nano Lett. 18, 7969–7976 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chanana, A. et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat. Commun. 13, 7693 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bogaerts, W. et al. Morphic: programmable photonic circuits enabled by silicon photonic mems. Proc. SPIE, Vol. 11285, 1128503 https://doi.org/10.1117/12.2540934 (2020).

  • Edinger, P. et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett. 46, 5671–5674 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Miller, D. A. B. et al. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B 32, 1043–1060 (1985).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Timurdogan, E. et al. Apsuny process design kit (pdkv3.0): O, C and L band silicon photonics component libraries on 300 mm wafers. Proc. Optical Fiber Communication Conference Exhibition Tu2A.1 https://doi.org/10.1364/OFC.2019.Tu2A.1 (2019).

  • Lee, C.-M. et al. Bright telecom-wavelength single photons based on a tapered nanobeam. Nano Lett. 21, 323–329 (2020).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Huber, T. et al. Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device. Optica 7, 380–385 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • He, Y.-M. et al. Coherently driving a single quantum two-level system with dichromatic laser pulses. Nat. Phys. 15, 941–946 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reimer, M. E. et al. Single electron charging in deterministically positioned InAs/InP quantum dots. Appl. Phys. Lett. 94, 011108 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Reimer, M. E. et al. Non-inverted electron–hole alignment in InAs/InP self-assembled quantum dots. Phys. Status Solidi B 246, 828–831 (2009).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Aghaeimeibodi, S., Lee, C.-M., Buyukkaya, M. A., Richardson, C. J. & Waks, E. Large Stark tuning of InAs/InP quantum dots. Appl. Phys. Lett. 114, 071105 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Warburton, R. J. et al. Giant permanent dipole moments of excitons in semiconductor nanostructures. Phys. Rev. B 65, 113303 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nawrath, C. et al. Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Appl. Phys. Lett. 115, 023103 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Nawrath, C. et al. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Appl. Phys. Lett. 118, 244002 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Anderson, M. et al. Coherence in single photon emission from droplet epitaxy and Stranski-Krastanov quantum dots in the telecom C-band. Appl. Phys. Lett. 118, 014003 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Wells, L. et al. Coherent light scattering from a telecom c-band quantum dot. Nat. Commun. 14, 8371 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Joos, R. et al. Coherently and Incoherently Pumped Telecom C-Band Single-Photon Source with High Brightness and Indistinguishability. Nano Lett. (2024).

  • Kiršanskė, G. et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Justice, J. et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 6, 610–614 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chakraborty, U. et al. Cryogenic operation of silicon photonic modulators based on the dc Kerr effect. Optica 7, 1385–1390 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ferrari, S., Schuck, C. & Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1758 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2, 030901 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).

    Article 
    ADS 

    Google Scholar
     

  • López-Pastor, V. & Marquardt, F. Self-learning machines based on Hamiltonian echo backpropagation. Phys. Rev. X 13, 031020 (2023).


    Google Scholar
     

  • Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Schnauber, P. et al. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett. 19, 7164–7172 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photon. 16, 834–842 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bower, C. A. et al. Printing Microleds and Microics for Next Generation Displays https://www.xdisplay.com/wp-content/uploads/2020/05/2018_08_30_IMID-updated.pdf (2018).

  • Bandyopadhyay, S. & Englund, D. Alignment-free photonic interconnects. Preprint at https://arxiv.org/abs/2110.12851 (2021).