Nagler, B. et al. Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys. 5, 693–696 (2009).
Yoneda, H. et al. Saturable absorption of intense hard X-rays in iron. Nat. Commun. 5, 5080 (2014).
Rackstraw, D. S. et al. Saturable absorption of an X-ray free-electron-laser heated solid-density aluminum plasma. Phys. Rev. Lett. 114, 015003 (2015).
Hoffmann, L. et al. Saturable absorption of free-electron laser radiation by graphite near the carbon K-edge. J. Phys. Chem. Lett. 13, 8963–8970 (2022).
Cho, B. I. et al. Observation of reverse saturable absorption of an X-ray laser. Phys. Rev. Lett. 119, 075002 (2017).
Kärtner, F., Jung, I. & Keller, U. Soliton mode-locking with saturable absorbers. IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
Wang, G., Baker-Murray, A. A. & Blau, W. J. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev. 13, 1800282 (2019).
Kulyk, B. et al. Penta(zinc porphyrin)[60]fullerenes: strong reverse saturable absorption for optical limiting applications. Appl. Surf. Sci. 533, 147468 (2020).
Deng, X. et al. Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting. Opt. Commun. 168, 207–212 (1999).
Quan, C. et al. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 457, 115–120 (2018).
Cho, M. S., Chung, H.-K. & Cho, B. I. Intensity-dependent resonant transmission of X-rays in solid-density aluminum plasma. Phys. Plasmas 25, 053301 (2018).
Inoue, I. et al. Shortening X-ray pulse duration via saturable absorption. Phys. Rev. Lett. 127, 163903 (2021).
White, T. G., Dai, J. & Riley, D. Dynamic and transient processes in warm dense matter. Philos. Trans. R. Soc. A 381, 20220223 (2023).
Falk, K. Experimental methods for warm dense matter research. High Power Laser Sci. Eng. 6, e59 (2018).
Riley, D. Warm Dense Matter (IOP Publishing, 2021).
Graziani, F. R., Desjarlais, M. P., Redmer, R. & Trickey, S. B. Frontiers and Challenges in Warm Dense Matter (Springer, 2014).
Vinko, S. M. et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62 (2012).
Vinko, S. M. X-ray free-electron laser studies of dense plasmas. J. Plasma Phys. 81, 365810501 (2015).
Renner, O. & Rosmej, F. B. Challenges of X-ray spectroscopy in investigations of matter under extreme conditions. Matter Radiat. Extremes 4, 024201 (2019).
Alonso-Mori, R. et al. Femtosecond electronic structure response to high intensity XFEL pulses probed by iron X-ray emission spectroscopy. Sci. Rep. 10, 16837 (2020).
Vinko, S. M. et al. Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma. Nat. Commun. 6, 6397 (2015).
van den Berg, Q. Y. et al. Clocking femtosecond collisional dynamics via resonant X-ray spectroscopy. Phys. Rev. Lett. 120, 055002 (2018).
Ciricosta, O. et al. Direct measurements of the ionization potential depression in a dense plasma. Phys. Rev. Lett. 109, 065002 (2012).
Ciricosta, O. et al. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun. 7, 11713 (2016).
Dorchies, F. & Recoules, V. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic. Phys. Rep. 657, 1–26 (2016).
Dorchies, F. et al. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast X-ray absorption near-edge spectroscopy. Phys. Rev. Lett. 107, 245006 (2011).
Cho, B. I. et al. Electronic structure of warm dense copper studied by ultrafast X-ray absorption spectroscopy. Phys. Rev. Lett. 106, 167601 (2011).
Cho, B. I. et al. Measurement of electron-ion relaxation in warm dense copper. Sci. Rep. 6, 18843 (2016).
B. Mahieu, B. et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 9, 3276 (2018).
Jourdain, N., Lecherbourg, L., Recoules, V., Renaudin, P. & Dorchies, F. Ultrafast thermal melting in nonequilibrium warm dense copper. Phys. Rev. Lett. 126, 065001 (2021).
Lee, J.-W. et al. Investigation of nonequilibrium electronic dynamics of warm dense copper with femtosecond X-ray absorption spectroscopy. Phys. Rev. Lett. 127, 175003 (2021).
Kas, J. J., Vila, F. D., Tan, T. S. & Rehr, J. J. Ab initio calculation of X-ray and related core-level spectroscopies: Green’s function approaches. Phys. Chem. Chem. Phys. 24, 13461–13473 (2022).
Van Hove, L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953).
Jourdain, N., Recoules, V., Lecherbourg, L., Renaudin, P. & Dorchies, F. Understanding XANES spectra of two-temperature warm dense copper using ab initio simulations. Phys. Rev. B 101, 125127 (2020).
Henke, B., Gullikson, E. & Davis, J. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50– 30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).
Ren, S. et al. Non-thermal evolution of dense plasmas driven by intense X-ray fields. Commun. Phys. 6, 99 (2023).
Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).
Waldecker, L., Bertoni, R., Ernstorfer, R. & Vorberger, J. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X 6, 021003 (2016).
Zhang, Q. et al. Effect of nonequilibrium transient electronic structures on lattice stability in metals: density functional theory calculations. Front. Phys. 10, 838568 (2022).
Tan, T. S., Kas, J. J. & Rehr, J. J. Real-space Green’s function approach for X-ray spectra at high temperature. Phys. Rev. B 104, 035144 (2021).
Tan, T. S., Kas, J. J., Trickey, S. B. & Rehr, J. J. High-temperature self-energy corrections to X-ray absorption spectra. Phys. Rev. B 107, 115122 (2023).
Ziaja, B., Castro, A. R. D., Weckert, E. & Möller, T. Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations. Eur. Phys. J. D 40, 465–480 (2006).
Ziaja, B. et al. Kinetic Boltzmann approach adapted for modeling highly ionized matter created by X-ray irradiation of a solid. Phys. Rev. E 93, 053210 (2016).
Ziaja, B. et al. Tracing X-ray-induced formation of warm dense gold with Boltzmann kinetic equations. Eur. Phys. J. D 75, 224 (2021).
Bévillon, E., Colombier, J. P., Recoules, V. & Stoian, R. Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: a first-principles study. Phys. Rev. B 89, 115117 (2014).
Jourdain, N., Lecherbourg, L., Recoules, V., Renaudin, P. & Dorchies, F. Electron-ion thermal equilibration dynamics in femtosecond heated warm dense copper. Phys. Rev. B 97, 075148 (2018).
de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids 1st edn (CRC Press, 2008).
Harmand, M. et al. Single-shot X-ray absorption spectroscopy at X-ray free electron lasers. Sci. Rep. 13, 18203 (2023).
Serkez, S. et al. Opportunities for two-color experiments in the soft X-ray regime at the European XFEL. Appl. Sci. 10, 2728 (2020).
Nordgren, J. et al. Soft X-ray emission spectroscopy using monochromatized synchrotron radiation. Rev. Sci. Instrum. 60, 1690–1696 (1989).
Gerasimova, N. et al. The soft X-ray monochromator at the SASE3 beamline of the European XFEL: from design to operation. J. Synchrotron Radiat. 29, 1299–1308 (2022).
Aristov, V. V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows (Springer Dordrecht, 2001).
Shkarofsky, I. P., Johnston, T. W. & Bachynski, M. P. The Particle Kinetics of Plasmas (Addison Wesley Publishing Company, 1966).
Son, S.-K., Young, L. & Santra, R. Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A 83, 033402 (2011).
Jurek, Z., Son, S.-K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Crystallogr. 49, 1048–1056 (2016).
Lotz, W. Electron-impact ionization cross-sections for atoms up to Z = 108. Z. Phys. A: Hadrons Nucl. 232, 101–107 (1970).
Data recorded for the experiment at the European XFEL. European XFEL https://doi.org/10.22003/XFEL.EU-DATA-002593-00 (2021).
Current (2024) stable version of FEFF10. GitHub times-software.github.io/feff10/ (2024).
Version of FEFF10 used for the present calculations. GitHub github.com/times-software/feff10/tree/scf_ramp (2024).