• Nagler, B. et al. Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys. 5, 693–696 (2009).

    Article 

    Google Scholar
     

  • Yoneda, H. et al. Saturable absorption of intense hard X-rays in iron. Nat. Commun. 5, 5080 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rackstraw, D. S. et al. Saturable absorption of an X-ray free-electron-laser heated solid-density aluminum plasma. Phys. Rev. Lett. 114, 015003 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hoffmann, L. et al. Saturable absorption of free-electron laser radiation by graphite near the carbon K-edge. J. Phys. Chem. Lett. 13, 8963–8970 (2022).

    Article 

    Google Scholar
     

  • Cho, B. I. et al. Observation of reverse saturable absorption of an X-ray laser. Phys. Rev. Lett. 119, 075002 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kärtner, F., Jung, I. & Keller, U. Soliton mode-locking with saturable absorbers. IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Wang, G., Baker-Murray, A. A. & Blau, W. J. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev. 13, 1800282 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kulyk, B. et al. Penta(zinc porphyrin)[60]fullerenes: strong reverse saturable absorption for optical limiting applications. Appl. Surf. Sci. 533, 147468 (2020).

    Article 

    Google Scholar
     

  • Deng, X. et al. Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting. Opt. Commun. 168, 207–212 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Quan, C. et al. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 457, 115–120 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cho, M. S., Chung, H.-K. & Cho, B. I. Intensity-dependent resonant transmission of X-rays in solid-density aluminum plasma. Phys. Plasmas 25, 053301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Inoue, I. et al. Shortening X-ray pulse duration via saturable absorption. Phys. Rev. Lett. 127, 163903 (2021).

    Article 
    ADS 

    Google Scholar
     

  • White, T. G., Dai, J. & Riley, D. Dynamic and transient processes in warm dense matter. Philos. Trans. R. Soc. A 381, 20220223 (2023).

    Article 

    Google Scholar
     

  • Falk, K. Experimental methods for warm dense matter research. High Power Laser Sci. Eng. 6, e59 (2018).

    Article 

    Google Scholar
     

  • Riley, D. Warm Dense Matter (IOP Publishing, 2021).

  • Graziani, F. R., Desjarlais, M. P., Redmer, R. & Trickey, S. B. Frontiers and Challenges in Warm Dense Matter (Springer, 2014).

  • Vinko, S. M. et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Vinko, S. M. X-ray free-electron laser studies of dense plasmas. J. Plasma Phys. 81, 365810501 (2015).

    Article 

    Google Scholar
     

  • Renner, O. & Rosmej, F. B. Challenges of X-ray spectroscopy in investigations of matter under extreme conditions. Matter Radiat. Extremes 4, 024201 (2019).

    Article 

    Google Scholar
     

  • Alonso-Mori, R. et al. Femtosecond electronic structure response to high intensity XFEL pulses probed by iron X-ray emission spectroscopy. Sci. Rep. 10, 16837 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Vinko, S. M. et al. Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma. Nat. Commun. 6, 6397 (2015).

    Article 
    ADS 

    Google Scholar
     

  • van den Berg, Q. Y. et al. Clocking femtosecond collisional dynamics via resonant X-ray spectroscopy. Phys. Rev. Lett. 120, 055002 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ciricosta, O. et al. Direct measurements of the ionization potential depression in a dense plasma. Phys. Rev. Lett. 109, 065002 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ciricosta, O. et al. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun. 7, 11713 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Dorchies, F. & Recoules, V. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic. Phys. Rep. 657, 1–26 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dorchies, F. et al. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast X-ray absorption near-edge spectroscopy. Phys. Rev. Lett. 107, 245006 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cho, B. I. et al. Electronic structure of warm dense copper studied by ultrafast X-ray absorption spectroscopy. Phys. Rev. Lett. 106, 167601 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cho, B. I. et al. Measurement of electron-ion relaxation in warm dense copper. Sci. Rep. 6, 18843 (2016).

    Article 
    ADS 

    Google Scholar
     

  • B. Mahieu, B. et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 9, 3276 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jourdain, N., Lecherbourg, L., Recoules, V., Renaudin, P. & Dorchies, F. Ultrafast thermal melting in nonequilibrium warm dense copper. Phys. Rev. Lett. 126, 065001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J.-W. et al. Investigation of nonequilibrium electronic dynamics of warm dense copper with femtosecond X-ray absorption spectroscopy. Phys. Rev. Lett. 127, 175003 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kas, J. J., Vila, F. D., Tan, T. S. & Rehr, J. J. Ab initio calculation of X-ray and related core-level spectroscopies: Green’s function approaches. Phys. Chem. Chem. Phys. 24, 13461–13473 (2022).

    Article 

    Google Scholar
     

  • Van Hove, L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Jourdain, N., Recoules, V., Lecherbourg, L., Renaudin, P. & Dorchies, F. Understanding XANES spectra of two-temperature warm dense copper using ab initio simulations. Phys. Rev. B 101, 125127 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Henke, B., Gullikson, E. & Davis, J. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50– 30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Ren, S. et al. Non-thermal evolution of dense plasmas driven by intense X-ray fields. Commun. Phys. 6, 99 (2023).

    Article 

    Google Scholar
     

  • Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Waldecker, L., Bertoni, R., Ernstorfer, R. & Vorberger, J. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X 6, 021003 (2016).


    Google Scholar
     

  • Zhang, Q. et al. Effect of nonequilibrium transient electronic structures on lattice stability in metals: density functional theory calculations. Front. Phys. 10, 838568 (2022).

    Article 

    Google Scholar
     

  • Tan, T. S., Kas, J. J. & Rehr, J. J. Real-space Green’s function approach for X-ray spectra at high temperature. Phys. Rev. B 104, 035144 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tan, T. S., Kas, J. J., Trickey, S. B. & Rehr, J. J. High-temperature self-energy corrections to X-ray absorption spectra. Phys. Rev. B 107, 115122 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ziaja, B., Castro, A. R. D., Weckert, E. & Möller, T. Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations. Eur. Phys. J. D 40, 465–480 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Ziaja, B. et al. Kinetic Boltzmann approach adapted for modeling highly ionized matter created by X-ray irradiation of a solid. Phys. Rev. E 93, 053210 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ziaja, B. et al. Tracing X-ray-induced formation of warm dense gold with Boltzmann kinetic equations. Eur. Phys. J. D 75, 224 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bévillon, E., Colombier, J. P., Recoules, V. & Stoian, R. Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: a first-principles study. Phys. Rev. B 89, 115117 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jourdain, N., Lecherbourg, L., Recoules, V., Renaudin, P. & Dorchies, F. Electron-ion thermal equilibration dynamics in femtosecond heated warm dense copper. Phys. Rev. B 97, 075148 (2018).

    Article 
    ADS 

    Google Scholar
     

  • de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids 1st edn (CRC Press, 2008).

  • Harmand, M. et al. Single-shot X-ray absorption spectroscopy at X-ray free electron lasers. Sci. Rep. 13, 18203 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Serkez, S. et al. Opportunities for two-color experiments in the soft X-ray regime at the European XFEL. Appl. Sci. 10, 2728 (2020).

    Article 

    Google Scholar
     

  • Nordgren, J. et al. Soft X-ray emission spectroscopy using monochromatized synchrotron radiation. Rev. Sci. Instrum. 60, 1690–1696 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Gerasimova, N. et al. The soft X-ray monochromator at the SASE3 beamline of the European XFEL: from design to operation. J. Synchrotron Radiat. 29, 1299–1308 (2022).

    Article 

    Google Scholar
     

  • Aristov, V. V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows (Springer Dordrecht, 2001).

  • Shkarofsky, I. P., Johnston, T. W. & Bachynski, M. P. The Particle Kinetics of Plasmas (Addison Wesley Publishing Company, 1966).

  • Son, S.-K., Young, L. & Santra, R. Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A 83, 033402 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Jurek, Z., Son, S.-K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Crystallogr. 49, 1048–1056 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lotz, W. Electron-impact ionization cross-sections for atoms up to Z = 108. Z. Phys. A: Hadrons Nucl. 232, 101–107 (1970).

    Article 

    Google Scholar
     

  • Data recorded for the experiment at the European XFEL. European XFEL https://doi.org/10.22003/XFEL.EU-DATA-002593-00 (2021).

  • Current (2024) stable version of FEFF10. GitHub times-software.github.io/feff10/ (2024).

  • Version of FEFF10 used for the present calculations. GitHub github.com/times-software/feff10/tree/scf_ramp (2024).