• Ebbesen, T. W. Hybrid light-matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flick, J., Rivera, N. & Narang, P. Strong light-matter coupling in quantum chemistry and quantum tonic’s. Nanophotonics 7, 1479–1501 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hopfield, J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barra-Burillo, M. et al. Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime. Nat. Commun. 12, 6206 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, D. et al. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 15, 125–130 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article 

    Google Scholar
     

  • Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photonics 6, 605–609 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kongsuwan, N. et al. Quantum plasmonic immunoassay sensing. Nano Lett. 19, 5853–5861 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schachenmayer, J., Genes, C., Tignone, E. & Pupillo, G. Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114, 196403 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Krainova, N., Grede, A. J., Tsokkou, D., Banerji, N. & Giebink, N. C. Polaron photoconductivity in the weak and strong light-matter coupling regime. Phys. Rev. Lett. 124, 177401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agranovich, V., Gartstein, Y. N. & Litinskaya, M. Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem. Rev. 111, 5179–5214 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vergauwe, R. M. et al. Quantum strong coupling with protein vibrational modes. J. Phys. Chem. Lett. 7, 4159–4164 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Tudela, A. et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasprzak, J. et al. Up on the jaynes–cummings ladder of a quantum-dot/microcavity system. Nat. Mater. 9, 304–308 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Groll, D. et al. Four-wave mixing dynamics of a strongly coupled quantum-dot–microcavity system driven by up to 20 photons. Phys. Rev. B 101, 245301 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kira, M. & Koch, S. W.Semiconductor Quantum Optics (Cambridge University Press, 2011).

  • Asano, T., Ochi, Y., Takahashi, Y., Kishimoto, K. & Noda, S. Photonic crystal nanocavity with a q factor exceeding eleven million. Opt. Express 25, 1769–1777 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santhosh, K., Bitton, O., Chuntonov, L. & Haran, G. Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 1–5 (2016).

    Article 

    Google Scholar
     

  • Kongsuwan, N. et al. Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 5, 186–191 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Groß, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, K.-D. et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci. Adv. 5, eaav5931 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bello, F., Kongsuwan, N., Donegan, J. F. & Hess, O. Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters. Nano Lett. 20, 5830–5836 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bello, F. D., Kongsuwan, N. & Hess, O. Near-field generation and control of ultrafast, multipartite entanglement for quantum nanoplasmonic networks. Nano Lett. 22, 2801–2808 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutman, N., Sukhorukov, A. A., Chong, Y. D. & de Sterke, C. M. Coherent perfect absorption and reflection in slow-light waveguides. Opt. Lett. 38, 4970–4973 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. & Argyropoulos, C. Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides. Opt. Lett. 43, 1806–1809 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, C., Sweeney, W. R., Stone, A. D. & Yang, L. Coherent perfect absorption at an exceptional point. Science 373, 1261–1265 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, W. Y., Zhang, J., Luo, Y., Gao, X. & Cui, T. J. Dynamic switching from coherent perfect absorption to parametric amplification in a nonlinear spoof plasmonic waveguide. Nat. Commun. 15, 2824 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vetlugin, A. N. et al. Coherent perfect absorption of single photons in a fiber network. Appl. Phys. Lett. 115, 191101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Roger, T. et al. Coherent absorption of n00n states. Phys. Rev. Lett. 117, 023601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Altuzarra, C. et al. Coherent perfect absorption in metamaterials with entangled photons. ACS Photonics 4, 2124–2128 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lyons, A. et al. Coherent metamaterial absorption of two-photon states with 40% efficiency. Phys. Rev. A 99, 011801 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vetlugin, A. N., Guo, R., Soci, C. & Zheludev, N. I. Anti-hong-ou-mandel interference by coherent perfect absorption of entangled photons. N. J. Phys. 24, 122001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Akhlaghi, M. K., Schelew, E. & Young, J. F. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat. Commun. 6, 8233 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vetlugin, A. N., Martinelli, F., Dong, S. & Soci, C. Photon number resolution without optical mode multiplication. Nanophotonics 12, 505–519 (2023).

    Article 

    Google Scholar
     

  • Everett, J. L. et al. Time-reversed and coherently enhanced memory: a single-mode quantum atom-optic memory without a cavity. Phys. Rev. A 98, 063846 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vetlugin, A. N., Guo, R., Soci, C. & Zheludev, N. I. Deterministic generation of entanglement in a quantum network by coherent absorption of a single photon. Phys. Rev. A 106, 012402 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grimm, P., Razinskas, G., Huang, J.-S. & Hecht, B. Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption. Nanophotonics 10, 1879–1887 (2021).

    Article 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics (Academic Press, Burlington, 2008).

  • Wuestner, S. & Hess, O. Active optical metamaterials. Prog. Opt. 59, 1–88 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Crai, A., Demetriadou, A. & Hess, O. Electron beam interrogation and control of ultrafast plexcitonic dynamics. ACS Photonics 7, 401–410 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cassette, E., Pensack, R. D., Mahler, B. & Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 6, 6086 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Melnikau, D. et al. Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and j-aggregates. J. Phys. Chem. Lett. 7, 354–362 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng, H., Szychowski, B., Daniel, M.-C. & Pelton, M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 9, 4012 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sweeney, W. R., Hsu, C. W. & Stone, A. D. Theory of reflectionless scattering modes. Phys. Rev. A 102, 063511 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Stone, A. D., Sweeney, W. R., Hsu, C. W., Wisal, K. & Wang, Z. Reflectionless excitation of arbitrary photonic structures: a general theory. Nanophotonics 10, 343–360 (2021).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Chiral surface plasmon polaritons on metallic nanowires. Phys. Rev. Lett. 107, 096801 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rewitz, C. et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry. Nano Lett. 12, 45–49 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rewitz, C. et al. Coherent control of plasmon propagation in a nanocircuit. Phys. Rev. Appl. 1, 014007 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wu, X. et al. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot. Nano Lett. 17, 4291–4296 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krauss, E., Razinskas, G., Köck, D., Grossmann, S. & Hecht, B. Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice. Nano Lett. 19, 3364–3369 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schörner, C. & Lippitz, M. Single molecule nonlinearity in a plasmonic waveguide. Nano Lett. 20, 2152–2156 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ochs, M. et al. Nanoscale electrical excitation of distinct modes in plasmonic waveguides. Nano Lett. 21, 4225–4230 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, Y. et al. Room-temperature quantum nanoplasmonic coherent perfect absorption. Zenodo. https://doi.org/10.5281/zenodo.12366459 (2024).