Richardson, O. W. A mechanical effect accompanying magnetization. Phys. Rev. (Ser. I) 26, 248 (1908).
Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampère’s molecular currents. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 18, 696 (1915).
Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73 (2022).
Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209 (2019).
Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).
Chen, H. et al. Chiral phonon diode effect in chiral crystals. Nano Lett. 22, 1688 (2022).
Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322 (2023).
Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946 (2023).
Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).
Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).
Juraschek, D. M. & Spaldin, N. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).
Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5591 (2020).
Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).
Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108 (2020).
Park, S. & Yang, B. J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694 (2020).
Jeong, S. G. et al. Unconventional interlayer exchange coupling via chiral phonons in synthetic magnetic oxide heterostructures. Sci. Adv. 8, abm4005 (2022).
Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).
Basini, M. et al. Terahertz electric-field driven dynamical multiferroicity in SrTiO3. Nature 628, 534 (2024).
Iliev, M. N. et al. Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition. Phys. Rev. B 59, 364 (1999).
Kiyama, T., Yoshimura, K., Kosuge, K., Ikeda, Y. & Bando, Y. Invar effect of SrRuO3: itinerant electron magnetism of Ru 4d electrons. Phys. Rev. B 54, R756 (1996).
Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698 (2023).
Jeong, S. G. et al. Phase instability amid dimensional crossover in artificial oxide crystal. Phys. Rev. Lett. 124, 026401 (2020).
Roth, T. et al. Temperature dependence of laser-induced demagnetization in Ni: a key for identifying the underlying mechanism. Phys. Rev. 2, 021006 (2012).
Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259 (2010).
Muller, G. M. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nat. Mater. 8, 56 (2008).
Cho, S. W. et al. Tailoring topological Hall effect in SrRuO3/SrTiO3 superlattices. Acta Mater. 216, 117153 (2021).
Bruno, P. Theory of interlayer magnetic coupling. Phys. Rev. B 52, 1 (1995).
Obata, T., Manako, T., Shimakawa, Y. & Kubo, Y. Tunneling magnetoresistance at up to 270 K in La0.8Sr0.2MnO3/SrTiO3/La0.8Sr0.2MnO3 junctions with 1.6-nm-thick barriers. Appl. Phys. Lett. 74, 2 (1999).
Bergeard, N. et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 117, 147203 (2016).
Koreeda, A., Takano, R. & Saikan, S. Second sound in SrTiO3. Phys. Rev. Lett. 99, 265502 (2007).
Bern, F. et al. Structural, magnetic and electrical properties of SrRuO3 films and SrRuO3/SrTiO3 superlattices. J. Phys. Condens. Matter 25, 496003 (2013).
Schmising, K. et al. Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404 (2008).
Ma, T. P. et al. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) through field orientation dependent measurements. J. Appl. Phys. 117, 013903 (2015).
Zhang, X.-W., Ren, Y., Wang, C., Cao, T. & Xiao, D. Gate-tunable phonon magnetic moment in bilayer graphene. Phys. Rev. Lett. 130, 226302 (2023).
Xiao, C., Ren, Y. & Xiong, B. Adiabatically induced orbital magnetization. Phys. Rev. B 103, 115432 (2021).
Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).
Geilhufe, R. M. & Hergert, W. Electron magnetic moment of transient chiral phonons in KTaO3. Phys. Rev. B 107, L020406 (2023).
Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).
Chaudhary, S., Juraschek, D. M., Rodriguez-Vega, M. & Fiete, G. A. Giant effective magnetic moments of chiral phonons from orbit-lattice coupling. Preprint at https://arxiv.org/abs/2306.11630 (2023).
Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540 (2024).
Choi, I. H. et al. Giant enhancement of electron–phonon coupling in dimensionality-controlled SrRuO3 heterostructures. Adv. Sci. 10, 2300012 (2023).
Jeong, S. G. et al. Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring. Adv. Sci. 7, 2001643 (2020).
Jeong, S. G., Seo, A. & Choi, W. S. Atomistic engineering of phonons in functional oxide heterostructures. Adv. Sci. 9, 2103403 (2022).
Lee, S., Apgar, B. A. & Martin, L. W. Strong visible-light absorption and hot-carrier injection in TiO2/SrRuO3 heterostructures. Adv. Energy Mater. 3, 1084 (2013).