• Richardson, O. W. A mechanical effect accompanying magnetization. Phys. Rev. (Ser. I) 26, 248 (1908).

    Article 

    Google Scholar
     

  • Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampère’s molecular currents. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 18, 696 (1915).

  • Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Chiral phonon diode effect in chiral crystals. Nano Lett. 22, 1688 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Juraschek, D. M. & Spaldin, N. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5591 (2020).

    Article 

    Google Scholar
     

  • Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. & Yang, B. J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, S. G. et al. Unconventional interlayer exchange coupling via chiral phonons in synthetic magnetic oxide heterostructures. Sci. Adv. 8, abm4005 (2022).

    Article 

    Google Scholar
     

  • Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

    Article 

    Google Scholar
     

  • Basini, M. et al. Terahertz electric-field driven dynamical multiferroicity in SrTiO3. Nature 628, 534 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliev, M. N. et al. Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition. Phys. Rev. B 59, 364 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kiyama, T., Yoshimura, K., Kosuge, K., Ikeda, Y. & Bando, Y. Invar effect of SrRuO3: itinerant electron magnetism of Ru 4d electrons. Phys. Rev. B 54, R756 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, S. G. et al. Phase instability amid dimensional crossover in artificial oxide crystal. Phys. Rev. Lett. 124, 026401 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, T. et al. Temperature dependence of laser-induced demagnetization in Ni: a key for identifying the underlying mechanism. Phys. Rev. 2, 021006 (2012).

    Article 

    Google Scholar
     

  • Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller, G. M. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nat. Mater. 8, 56 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, S. W. et al. Tailoring topological Hall effect in SrRuO3/SrTiO3 superlattices. Acta Mater. 216, 117153 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bruno, P. Theory of interlayer magnetic coupling. Phys. Rev. B 52, 1 (1995).

    Article 

    Google Scholar
     

  • Obata, T., Manako, T., Shimakawa, Y. & Kubo, Y. Tunneling magnetoresistance at up to 270 K in La0.8Sr0.2MnO3/SrTiO3/La0.8Sr0.2MnO3 junctions with 1.6-nm-thick barriers. Appl. Phys. Lett. 74, 2 (1999).

    Article 

    Google Scholar
     

  • Bergeard, N. et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 117, 147203 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koreeda, A., Takano, R. & Saikan, S. Second sound in SrTiO3. Phys. Rev. Lett. 99, 265502 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bern, F. et al. Structural, magnetic and electrical properties of SrRuO3 films and SrRuO3/SrTiO3 superlattices. J. Phys. Condens. Matter 25, 496003 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmising, K. et al. Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404 (2008).

    Article 

    Google Scholar
     

  • Ma, T. P. et al. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) through field orientation dependent measurements. J. Appl. Phys. 117, 013903 (2015).

    Article 

    Google Scholar
     

  • Zhang, X.-W., Ren, Y., Wang, C., Cao, T. & Xiao, D. Gate-tunable phonon magnetic moment in bilayer graphene. Phys. Rev. Lett. 130, 226302 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, C., Ren, Y. & Xiong, B. Adiabatically induced orbital magnetization. Phys. Rev. B 103, 115432 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geilhufe, R. M. & Hergert, W. Electron magnetic moment of transient chiral phonons in KTaO3. Phys. Rev. B 107, L020406 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, S., Juraschek, D. M., Rodriguez-Vega, M. & Fiete, G. A. Giant effective magnetic moments of chiral phonons from orbit-lattice coupling. Preprint at https://arxiv.org/abs/2306.11630 (2023).

  • Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, I. H. et al. Giant enhancement of electron–phonon coupling in dimensionality-controlled SrRuO3 heterostructures. Adv. Sci. 10, 2300012 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, S. G. et al. Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring. Adv. Sci. 7, 2001643 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, S. G., Seo, A. & Choi, W. S. Atomistic engineering of phonons in functional oxide heterostructures. Adv. Sci. 9, 2103403 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S., Apgar, B. A. & Martin, L. W. Strong visible-light absorption and hot-carrier injection in TiO2/SrRuO3 heterostructures. Adv. Energy Mater. 3, 1084 (2013).

    Article 
    CAS 

    Google Scholar