• Millen, J. & Stickler, B. A. Quantum experiments with microscale particles. Contemp. Phys. 61, 155–168 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, eabg3027 (2021).

    Article 

    Google Scholar
     

  • Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Piotrowski, J. et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nat. Phys. 19, 1009–1013 (2023).

    Article 

    Google Scholar
     

  • Pontin, A., Fu, H., Toroš, M., Monteiro, T. S. & Barker, P. F. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle. Nat. Phys. 19, 1003–1008 (2023).

    Article 

    Google Scholar
     

  • Sukhov, S. & Dogariu, A. Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, X., Liu, Y., Lin, Z., Ng, J. & Chan, C. T. Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters. Nat. Commun. 12, 6597 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Svak, V. et al. Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 9, 5453 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Arita, Y., Simpson, S. H., Zemánek, P. & Dholakia, K. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Sci. Adv. 6, eaaz9858 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Arita, Y. et al. Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope. Commun. Phys. 6, 1–7 (2023).

    Article 

    Google Scholar
     

  • Hu, Y. et al. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor. Nat. Commun. 14, 2638 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rieser, J. et al. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377, 987–990 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Simpson, S. H. & Hanna, S. First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E 82, 031141 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Simpson, S. H., Arita, Y., Dholakia, K. & Zemánek, P. Stochastic Hopf bifurcations in vacuum optical tweezers. Phys. Rev. A 104, 043518 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Brzobohatý, O. et al. Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum. Nat. Commun. 14, 5441 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article 
    ADS 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 

    Google Scholar
     

  • Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics 11, 752–762 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Öztürk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Article 

    Google Scholar
     

  • Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys. X 7, 2109431 (2022).


    Google Scholar
     

  • Heugel, T. L., Oscity, M., Eichler, A., Zilberberg, O. & Chitra, R. Classical many-body time crystals. Phys. Rev. Lett. 123, 124301 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Shapere, A. & Wilczek, F. Classical time crystals. Phys. Rev. Lett. 109, 160402 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Liu, T., Ou, J.-Y., MacDonald, K. F. & Zheludev, N. I. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 19, 986–991 (2023).

    Article 

    Google Scholar
     

  • Raskatla, V., Liu, T., Li, J., MacDonald, K. F. & Zheludev, N. I. Continuous space-time crystal state driven by nonreciprocal optical forces. Preprint at https://doi.org/10.48550/arXiv.2310.10747 (2023).

  • Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

  • Shen, R.-F. & Matzner, C. D. Evolution of accretion disks in tidal disruption events. Astrophys. J. 784, 87 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liška, V. et al. Cold damping of levitated optically coupled nanoparticles. Optica 10, 1203 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bender, C. M., Gianfreda, M. & Klevansky, S. P. Systems of coupled PT-symmetric oscillators. Phys. Rev. A 90, 022114 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kuang, T. et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nat. Phys. 19, 414–419 (2023).

    Article 

    Google Scholar
     

  • Pettit, R. M. et al. An optical tweezer phonon laser. Nat. Photonics 13, 402–405 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, Y., Liu, L.-H., Chen, X.-D., Guo, G.-C. & Sun, F.-W. Arbitrary nonequilibrium steady-state construction with a levitated nanoparticle. Phys. Rev. Res. 5, 033101 (2023).

    Article 

    Google Scholar
     

  • Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article 

    Google Scholar
     

  • Sharma, S., Kani, A. & Bhattacharya, M. PT symmetry, induced mechanical lasing, and tunable force sensing in a coupled-mode optically levitated nanoparticle. Phys. Rev. A 105, 043505 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tass, P. et al. Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81, 3291–3294 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Bender, C. M., Berntson, B. K., Parker, D. & Samuel, E. Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liang, Q. et al. Dynamic signatures of Non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zou, D. et al. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun. 12, 7201 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Reisenbauer, M. et al. Non-Hermitian dynamics and non-reciprocity of optically coupled nanoparticles. Nat. Phy. https://doi.org/10.1038/s41567-024-02589-8 (2024).

  • Leite, I. T. et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics 12, 33–39 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373–377 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rudolph, H., Delić, U., Aspelmeyer, M., Hornberger, K. & Stickler, B. A. Force-gradient sensing and entanglement via feedback cooling of interacting nanoparticles. Phys. Rev. Lett. 129, 193602 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liška, V. et al. Observations of a PT-like phase transition and limit cycle oscillations in non-reciprocally coupled optomechanical oscillators levitated in vacuum (2024). Zenodo https://doi.org/10.5281/zenodo.11119872 (2024).