Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).
Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 82, 184516 (2010).
Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).
Cheng, M. Superconducting proximity effect on the edge of fractional topological insulators. Phys. Rev. B 86, 195126 (2012).
Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).
Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013).
Vaezi, A. Superconducting analogue of the parafermion fractional quantum Hall states. Phys. Rev. X 4, 031009 (2014).
Hart, S. et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 10, 638–643 (2014).
Wiedenmann, J. et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 7, 10303 (2016).
Clarke, D. J., Alicea, J. & Shtengel, K. Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems. Nat. Phys. 10, 877–882 (2014).
Hou, Z., Xing, Y., Guo, A.-M. & Sun, Q.-F. Crossed Andreev effects in two-dimensional quantum Hall systems. Phys. Rev. B 94, 064516 (2016).
Beconcini, M., Polini, M. & Taddei, F. Nonlocal superconducting correlations in graphene in the quantum Hall regime. Phys. Rev. B 97, 201403 (2018).
Galambos, T. H., Ronetti, F., Hetényi, B., Loss, D. & Klinovaja, J. Crossed Andreev reflection in spin-polarized chiral edge states due to the Meissner effect. Phys. Rev. B 106, 075410 (2022).
Hoppe, H., Zülicke, U. & Schön, G. Andreev reflection in strong magnetic fields. Phys. Rev. Lett. 84, 1804–1807 (2000).
Chtchelkatchev, N. M. & Burmistrov, I. S. Conductance oscillations with magnetic field of a two-dimensional electron gas–superconductor junction. Phys. Rev. B 75, 214510 (2007).
Khaymovich, I. M., Chtchelkatchev, N. M., Shereshevskii, I. A. & Mel’nikov, A. S. Andreev transport in two-dimensional normal-superconducting systems in strong magnetic fields. Europhys. Lett. 91, 17005 (2010).
Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).
Zhao, L. et al. Interference of chiral Andreev edge states. Nat. Phys. 13, 862–867 (2020).
Hatefipour, M. et al. Induced superconducting pairing in integer quantum Hall edge states. Nano Lett. 22, 6173–6178 (2022).
Gül, O. et al. Andreev reflection in the fractional quantum Hall state. Phys. Rev. X 12, 021057 (2022).
Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).
Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).
Wang, J., Zhou, Q., Lian, B. & Zhang, S.-C. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition. Phys. Rev. B 92, 064520 (2015).
Beenakker, C. W. J. et al. Deterministic creation and braiding of chiral edge vortices. Phys. Rev. Lett. 122, 146803 (2019).
Beenakker, C. J., Grabsch, A. & Herasymenko, Y. Electrical detection of the Majorana fusion rule for chiral edge vortices in a topological superconductor. SciPost Phys. 6, 022 (2019).
Adagideli, I., Hassler, F., Grabsch, A., Pacholski, M. & Beenakker, C. W. J. Time-resolved electrical detection of chiral edge vortex braiding. SciPost Phys. 8, 013 (2020).
Bauerle, C. et al. Coherent control of single electrons: a review of current progress. Rep. Prog. Phys. 81, 056503 (2018).
Kayyalha, M. et al. Absence of evidence for chiral Majorana modes in quantum anomalous Hall-superconductor devices. Science 367, 64–67 (2020).
Shen, J. et al. Spectroscopic fingerprint of chiral Majorana modes at the edge of a quantum anomalous Hall insulator/superconductor heterostructure. Proc. Natl Acad. Sci. USA 117, 238–242 (2020).
Thorp, H. H. Editorial retraction. Science 378, 718 (2022).
Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).
Ghatak, S. et al. Anomalous Fraunhofer patterns in gated Josephson junctions based on the bulk-insulating topological insulator BiSbTeSe2. Nano Lett. 18, 5124–5131 (2018).
Zhang, R.-X., Hsu, H.-C. & Liu, C.-X. Electrically tunable spin polarization of chiral edge modes in a quantum anomalous Hall insulator. Phys. Rev. B 93, 235315 (2016).
Lippertz, G. et al. Current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 106, 045419 (2022).
Kawamura, M. et al. Current-driven instability of the quantum anomalous Hall effect in ferromagnetic topological insulators. Phys. Rev. Lett. 119, 016803 (2017).
Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 075145 (2018).
Rodenbach, L. K. et al. Bulk dissipation in the quantum anomalous Hall effect. APL Mater. 9, 081116 (2021).
Fijalkowski, K. M. et al. Quantum anomalous Hall edge channels survive up to the Curie temperature. Nat. Commun. 12, 5599 (2021).
Qiu, G. et al. Mesoscopic transport of quantum anomalous Hall effect in the submicron size regime. Phys. Rev. Lett. 128, 217704 (2022).
Zhou, L.-J. et al. Confinement-induced chiral edge channel interaction in quantum anomalous Hall insulators. Phys. Rev. Lett. 130, 086201 (2023).
Böttcher, J., Tutschku, C., Molenkamp, L. W. & Hankiewicz, E. M. Survival of the quantum anomalous Hall effect in orbital magnetic fields as a consequence of the parity anomaly. Phys. Rev. Lett. 123, 226602 (2019).
Böttcher, J., Tutschku, C. & Hankiewicz, E. M. Fate of quantum anomalous Hall effect in the presence of external magnetic fields and particle-hole asymmetry. Phys. Rev. B 101, 195433 (2020).
Saito, K. Critical field limitation of the niobium superconducting RF cavity. In Proc. 10th Workshop on RF Superconductivity. 583–587 (High Energy Accelerator Research Organization, 2001).
Tang, Y., Knapp, C. & Alicea, J. Vortex-enabled Andreev processes in quantum Hall–superconductor hybrids. Phys. Rev. B 106, 245411 (2022).
Schiller, N. et al. Superconductivity and fermionic dissipation in quantum Hall edges. Phys. Rev. B 107, L161105 (2023).
Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).
Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).
Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders Collage Publishing, 1976).
Zaytseva, I., Abaloszew, A., Camargo, B. C., Syryanyy, Y. & Cieplak, M. Z. Upper critical field and superconductor-metal transition in ultrathin niobium films. Sci. Rep. 10, 19062 (2020).
Kurilovich, V. D. & Glazman, L. I. Criticality in the crossed Andreev reflection of a quantum Hall edge. Phys. Rev. X 13, 031027 (2023).
Fu, L. & Kane, C. L. Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).
Akhmerov, A. R., Nilsson, J. & Beenakker, C. W. J. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).
Kurilovich, V. D., Raines, Z. M. & Glazman, L. I. Disorder-enabled Andreev reflection of a quantum Hall edge. Nat. Commun. 14, 2237 (2023).
David, A., Meyer, J. S. & Houzet, M. Geometrical effects on the downstream conductance in quantum-Hall–superconductor hybrid systems. Phys. Rev. B 107, 125416 (2023).
Michelsen, A. B., Recher, P., Braunecker, B. & Schmidt, T. L. Supercurrent-enabled Andreev reflection in a chiral quantum Hall edge state. Phys. Rev. Res. 5, 013066 (2023).
Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).
Chen, C.-Z., Xie, Y.-M., Liu, J., Lee, P. A. & Law, K. T. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation. Phys. Rev. B 97, 104504 (2018).
Uday, A. et al. Induced superconducting correlations in a quantum anomalous Hall insulator. Zenodo https://doi.org/10.5281/zenodo.11231864 (2023).