• Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 82, 184516 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).


    Google Scholar
     

  • Cheng, M. Superconducting proximity effect on the edge of fractional topological insulators. Phys. Rev. B 86, 195126 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vaezi, A. Superconducting analogue of the parafermion fractional quantum Hall states. Phys. Rev. X 4, 031009 (2014).


    Google Scholar
     

  • Hart, S. et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 10, 638–643 (2014).

    Article 

    Google Scholar
     

  • Wiedenmann, J. et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 7, 10303 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems. Nat. Phys. 10, 877–882 (2014).

    Article 

    Google Scholar
     

  • Hou, Z., Xing, Y., Guo, A.-M. & Sun, Q.-F. Crossed Andreev effects in two-dimensional quantum Hall systems. Phys. Rev. B 94, 064516 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Beconcini, M., Polini, M. & Taddei, F. Nonlocal superconducting correlations in graphene in the quantum Hall regime. Phys. Rev. B 97, 201403 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Galambos, T. H., Ronetti, F., Hetényi, B., Loss, D. & Klinovaja, J. Crossed Andreev reflection in spin-polarized chiral edge states due to the Meissner effect. Phys. Rev. B 106, 075410 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hoppe, H., Zülicke, U. & Schön, G. Andreev reflection in strong magnetic fields. Phys. Rev. Lett. 84, 1804–1807 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Chtchelkatchev, N. M. & Burmistrov, I. S. Conductance oscillations with magnetic field of a two-dimensional electron gas–superconductor junction. Phys. Rev. B 75, 214510 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Khaymovich, I. M., Chtchelkatchev, N. M., Shereshevskii, I. A. & Mel’nikov, A. S. Andreev transport in two-dimensional normal-superconducting systems in strong magnetic fields. Europhys. Lett. 91, 17005 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).

    Article 

    Google Scholar
     

  • Zhao, L. et al. Interference of chiral Andreev edge states. Nat. Phys. 13, 862–867 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hatefipour, M. et al. Induced superconducting pairing in integer quantum Hall edge states. Nano Lett. 22, 6173–6178 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gül, O. et al. Andreev reflection in the fractional quantum Hall state. Phys. Rev. X 12, 021057 (2022).


    Google Scholar
     

  • Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).


    Google Scholar
     

  • Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Zhou, Q., Lian, B. & Zhang, S.-C. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition. Phys. Rev. B 92, 064520 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Beenakker, C. W. J. et al. Deterministic creation and braiding of chiral edge vortices. Phys. Rev. Lett. 122, 146803 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Beenakker, C. J., Grabsch, A. & Herasymenko, Y. Electrical detection of the Majorana fusion rule for chiral edge vortices in a topological superconductor. SciPost Phys. 6, 022 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Adagideli, I., Hassler, F., Grabsch, A., Pacholski, M. & Beenakker, C. W. J. Time-resolved electrical detection of chiral edge vortex braiding. SciPost Phys. 8, 013 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bauerle, C. et al. Coherent control of single electrons: a review of current progress. Rep. Prog. Phys. 81, 056503 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kayyalha, M. et al. Absence of evidence for chiral Majorana modes in quantum anomalous Hall-superconductor devices. Science 367, 64–67 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Shen, J. et al. Spectroscopic fingerprint of chiral Majorana modes at the edge of a quantum anomalous Hall insulator/superconductor heterostructure. Proc. Natl Acad. Sci. USA 117, 238–242 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Thorp, H. H. Editorial retraction. Science 378, 718 (2022).


    Google Scholar
     

  • Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ghatak, S. et al. Anomalous Fraunhofer patterns in gated Josephson junctions based on the bulk-insulating topological insulator BiSbTeSe2. Nano Lett. 18, 5124–5131 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, R.-X., Hsu, H.-C. & Liu, C.-X. Electrically tunable spin polarization of chiral edge modes in a quantum anomalous Hall insulator. Phys. Rev. B 93, 235315 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lippertz, G. et al. Current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 106, 045419 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kawamura, M. et al. Current-driven instability of the quantum anomalous Hall effect in ferromagnetic topological insulators. Phys. Rev. Lett. 119, 016803 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 075145 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rodenbach, L. K. et al. Bulk dissipation in the quantum anomalous Hall effect. APL Mater. 9, 081116 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fijalkowski, K. M. et al. Quantum anomalous Hall edge channels survive up to the Curie temperature. Nat. Commun. 12, 5599 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Qiu, G. et al. Mesoscopic transport of quantum anomalous Hall effect in the submicron size regime. Phys. Rev. Lett. 128, 217704 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, L.-J. et al. Confinement-induced chiral edge channel interaction in quantum anomalous Hall insulators. Phys. Rev. Lett. 130, 086201 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Böttcher, J., Tutschku, C., Molenkamp, L. W. & Hankiewicz, E. M. Survival of the quantum anomalous Hall effect in orbital magnetic fields as a consequence of the parity anomaly. Phys. Rev. Lett. 123, 226602 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Böttcher, J., Tutschku, C. & Hankiewicz, E. M. Fate of quantum anomalous Hall effect in the presence of external magnetic fields and particle-hole asymmetry. Phys. Rev. B 101, 195433 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Saito, K. Critical field limitation of the niobium superconducting RF cavity. In Proc. 10th Workshop on RF Superconductivity. 583–587 (High Energy Accelerator Research Organization, 2001).

  • Tang, Y., Knapp, C. & Alicea, J. Vortex-enabled Andreev processes in quantum Hall–superconductor hybrids. Phys. Rev. B 106, 245411 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schiller, N. et al. Superconductivity and fermionic dissipation in quantum Hall edges. Phys. Rev. B 107, L161105 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders Collage Publishing, 1976).

  • Zaytseva, I., Abaloszew, A., Camargo, B. C., Syryanyy, Y. & Cieplak, M. Z. Upper critical field and superconductor-metal transition in ultrathin niobium films. Sci. Rep. 10, 19062 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kurilovich, V. D. & Glazman, L. I. Criticality in the crossed Andreev reflection of a quantum Hall edge. Phys. Rev. X 13, 031027 (2023).


    Google Scholar
     

  • Fu, L. & Kane, C. L. Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Akhmerov, A. R., Nilsson, J. & Beenakker, C. W. J. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Kurilovich, V. D., Raines, Z. M. & Glazman, L. I. Disorder-enabled Andreev reflection of a quantum Hall edge. Nat. Commun. 14, 2237 (2023).

    Article 
    ADS 

    Google Scholar
     

  • David, A., Meyer, J. S. & Houzet, M. Geometrical effects on the downstream conductance in quantum-Hall–superconductor hybrid systems. Phys. Rev. B 107, 125416 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Michelsen, A. B., Recher, P., Braunecker, B. & Schmidt, T. L. Supercurrent-enabled Andreev reflection in a chiral quantum Hall edge state. Phys. Rev. Res. 5, 013066 (2023).

    Article 

    Google Scholar
     

  • Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chen, C.-Z., Xie, Y.-M., Liu, J., Lee, P. A. & Law, K. T. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation. Phys. Rev. B 97, 104504 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Uday, A. et al. Induced superconducting correlations in a quantum anomalous Hall insulator. Zenodo https://doi.org/10.5281/zenodo.11231864 (2023).