• Plummer, E. W. & Gustafsson, T. Geometry of adsorbates on solid surfaces. Science 198, 165–170 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Smith, N. V. & Woodruff, D. P. Inverse photoemission from metal surfaces. Prog. Surf. Sci. 21, 295–370 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Woodruff, D. P. Fine structure in ionisation cross sections and applications to surface science. Rep. Prog. Phys. 49, 683 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Bertel, E. Unoccupied electronic states in adsorbate systems. Appl. Phys. A 53, 356–368 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Otto, A., Bornemann, T., Ertürk, Ü., Mrozek, I. & Pettenkofer, C. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver. Surf. Sci. 210, 363–386 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Jacobi, K., Astaldi, C., Geng, P. & Bertolo, M. Physisorption of N2 and CO on Al(111): a combined HREELS-UPS investigation. Surf. Sci. 223, 569–577 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Hansen, W., Bertolo, M. & Jacobi, K. Physisorption of CO on Ag(111): investigation of the monolayer and the multilayer through HREELS, ARUPS, and TDS. Surf. Sci. 253, 1–12 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Bertolo, M., Hansen, W., Geng, P. & Jacobi, K. Resonance and dipole electron-scattering in physisorbed mono- and multilayers on Al(111) and Ag(111) surfaces. Surf. Sci. 251252, 359–363 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    Article 

    Google Scholar
     

  • Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article 

    Google Scholar
     

  • Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Landry, M. J., Gellé, A., Meng, B. Y., Barrett, C. J. & Moores, A. Surface-plasmon-mediated hydrogenation of carbonyls catalyzed by silver nanocubes under visible light. ACS Catal. 7, 6128–6133 (2017).

    Article 

    Google Scholar
     

  • Kim, Y., Wilson, A. J. & Jain, P. K. The nature of plasmonically assisted hot-electron transfer in a donor–bridge–acceptor complex. ACS Catal. 7, 4360–4365 (2017).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Oshikiri, T., Ueno, K. & Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014).

    Article 

    Google Scholar
     

  • Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article 

    Google Scholar
     

  • Ezendam, S. et al. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 7, 778–815 (2022).

    Article 

    Google Scholar
     

  • Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Herran, M. et al. Tailoring plasmonic bimetallic nanocatalysts toward sunlight-driven H2 production. Adv. Funct. Mater. 32, 2203418 (2022).

    Article 

    Google Scholar
     

  • Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Khurgin, J. B. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 178, 109–122 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Foerster, B., Spata, V. A., Carter, E. A., Sönnichsen, C. & Link, S. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5, eaav0704 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Persson, B. N. J. Polarizability of small spherical metal particles: influence of the matrix environment. Surf. Sci. 281, 153–162 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    Article 

    Google Scholar
     

  • Kneipp, K. et al. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 76, 2444–2447 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Persson, B. N. J. Surface resistivity and vibrational damping in adsorbed layers. Phys. Rev. B 44, 3277–3296 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Gadzuk, J. W. Resonance-assisted, hot-electron-induced desorption. Surf. Sci. 342, 345–358 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Khurgin, J. B. Hot carriers generated by plasmons: where are they generated and where do they go from there? Faraday Discuss. 214, 35–58 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gadzuk, J. W. & Šunjić, M. Electron scattering from molecules adsorbed on surfaces. AIP Conf. Proc. 204, 118–130 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, R. E. & Rous, P. J. Resonances in electron scattering by molecules on surfaces. Rev. Mod. Phys. 64, 383–440 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Teillet-Billy, D. & Gauyacq, J. P. Resonant electron scattering by molecules adsorbed on metal surfaces: angular aspects. Nucl. Instrum. Meth. B 101, 88–92 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Sanche, L. Low-energy electron scattering from molecules on surfaces. J. Phys. B 23, 1597–1624 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Bartolucci, F. & Franchy, R. EELS of negative-ion resonances: N2 films on Ag(110) at 15 K. Surf. Sci. 368, 27–37 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Berman, M., Estrada, H., Cederbaum, L. S. & Domcke, W. Nuclear dynamics in resonant electron-molecule scattering beyond the local approximation: the 2.3-eV shape resonance in N2. Phys. Rev. A 28, 1363–1381 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Herzenberg, A. Oscillatory energy dependence of resonant electron-molecule scattering. J. Phys. B 1, 548 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Avouris, P. & Demuth, J. Electron energy loss spectroscopy in the study of surfaces. Annu. Rev. Phys. Chem. 35, 49–73 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Avouris, P. & Persson, B. N. J. Excited states at metal surfaces and their non-radiative relaxation. J. Phys. Chem. 88, 837–848 (1984).

    Article 

    Google Scholar
     

  • Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–509 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Pinchuk, A. & Kreibig, U. Interface decay channel of particle surface plasmon resonance. N. J. Phys. 5, 151 (2003).

    Article 

    Google Scholar
     

  • Lang, N. D. & Williams, A. R. Theory of atomic chemisorption on simple metals. Phys. Rev. B 18, 616–636 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Tobin, R. G. Mechanisms of adsorbate-induced surface resistivity––experimental and theoretical developments. Surf. Sci. 502-503, 374–387 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Grabhorn, H., Otto, A., Schumacher, D. & Persson, B. N. J. Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4. Surf. Sci. 264, 327–340 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Ke, Y. et al. Resistivity of thin Cu films with surface roughness. Phys. Rev. B 79, 155406 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Winkes, H., Schumacher, D. & Otto, A. Surface resistance measurements at the metal/electrolyte interface of Ag(100) and Ag(111) thin film electrodes. Surf. Sci. 400, 44–53 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Westcott, S. L., Averitt, R. D., Wolfgang, J. A., Nordlander, P. & Halas, N. J. Adsorbate-induced quenching of hot electrons in gold core−shell nanoparticles. J. Phys. Chem. B 105, 9913–9917 (2001).

    Article 

    Google Scholar
     

  • Liu, C. & Tobin, R. G. Bonding-site dependence of surface resistivity: CO on epitaxial Cu(100) films. J. Chem. Phys. 126, 124705 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Holzapfel, C., Akemann, W., Schumacher, D. & Otto, A. Variations of DC-resistance and SERS intensity during exposure of cold-deposited silver films. Surf. Sci. 227, 123–128 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Ahmadi, K., Wu, D., Dole, N., Monteiro, O. R. & Brankovic, S. R. Tuning surface chemoresistivity of Au ultrathin films using metal deposition via surface-limited redox replacement of the underpotentially deposited Pb monolayer. ACS Sens. 4, 2442–2449 (2019).

    Article 

    Google Scholar
     

  • Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article 

    Google Scholar
     

  • Gallinet, B., Siegfried, T., Sigg, H., Nordlander, P. & Martin, O. J. F. Plasmonic radiance: probing structure at the Ångström scale with visible light. Nano Lett. 13, 497–503 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. G., Zhang, H., Link, S. & Nordlander, P. Relaxation of plasmon-induced hot carriers. ACS Photon. 5, 2584–2595 (2018).

    Article 

    Google Scholar
     

  • Wu, S. et al. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129, 173103 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Beane, G., Brown, B. S., Devkota, T. & Hartland, G. V. Light-like group velocities and long lifetimes for leaky surface plasmon polaritons in noble metal nanostripes. J. Phys. Chem. C 123, 15729–15737 (2019).

    Article 

    Google Scholar
     

  • Kreibig, U. & Vollmer, M. in Optical Properties of Metal Clusters (eds Kreibig, U. & Vollmer, M.) 13–201 (Springer, 1995).

  • Kreibig, U. & Vollmer, M. in Optical Properties of Metal Clusters (eds Kreibig, U. & Vollmer, M.) 275–436 (Springer, 1995).

  • Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Khurgin, J. B., Petrov, A., Eich, M. & Uskov, A. V. Direct plasmonic excitation of the hybridized surface states in metal nanoparticles. ACS Photon. 8, 2041–2049 (2021).

    Article 

    Google Scholar
     

  • Chang, E. S., Antoni, Th., Jung, K. & Ehrhardt, H. Coherent resonance and dipole scattering in rotational excitation of molecules by slow electrons. Phys. Rev. A 30, 2086–2088 (1984).

  • Kim, Y., Ji, S. & Nam, J.-M. A chemist’s view on electronic and steric effects of surface ligands on plasmonic metal nanostructures. Acc. Chem. Res. 56, 2139–2150 (2023).

    Article 

    Google Scholar
     

  • Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Oksenberg, E. et al. Energy-resolved plasmonic chemistry in individual nanoreactors. Nat. Nanotechnol. 16, 1378–1385 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dong, Y., Hu, C., Xiong, H., Long, R. & Xiong, Y. Plasmonic catalysis: new opportunity for selective chemical bond evolution. ACS Catal. 13, 6730–6743 (2023).

    Article 

    Google Scholar
     

  • Kiani, F. et al. Transport and interfacial injection of d-band hot holes control plasmonic chemistry. ACS Energy Lett. 8, 4242–4250 (2023).

    Article 

    Google Scholar
     

  • Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hou, B., Thoss, M., Banin, U. & Rabani, E. Incoherent nonadiabatic to coherent adiabatic transition of electron transfer in colloidal quantum dot molecules. Nat. Commun. 14, 3073 (2023).

  • Zhang, Q. et al. Real-time observation of two distinctive non-thermalized hot electron dynamics at MXene/molecule interfaces. Nat. Commun. 15, 4406 (2024).

  • Petek, H. Photoexcitation of adsorbates on metal surfaces: One-step or three-step. J. Chem. Phys. 137, 091704 (2012).

  • De Sio, A. & Lienau, C. Vibronic coupling in organic semiconductors for photovoltaics. Phys. Chem. Chem. Phys. 19, 18813–18830 (2017).

  • Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

  • Wang, S., Scholes, G. D. & Hsu, L.-Y. Coherent-to-incoherent transition of molecular fluorescence controlled by surface plasmon polaritons. J. Phys. Chem. Lett. 11, 5948–5955 (2020).

  • Kato, T., Tanaka, T., Yajima, T. & Uchida, K. Temperature dependence of resistivity increases induced by thiols adsorption in gold nanosheets. Jpn. J. Appl. Phys. 60, SBBH13 (2021).

    Article 

    Google Scholar
     

  • Brown, B. S. & Hartland, G. V. Chemical interface damping for propagating surface plasmon polaritons in gold nanostripes. J. Chem. Phys. 152, 024707 (2020).

    Article 

    Google Scholar
     

  • Stefancu, A. et al. Halide–metal complexes at plasmonic interfaces create new decay pathways for plasmons and excited molecules. ACS Photon. 9, 895–904 (2022).

    Article 

    Google Scholar
     

  • Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article 

    Google Scholar
     

  • Schürmann, R. et al. Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle–ligand systems. J. Phys. Chem. C 126, 5333–5342 (2022).

    Article 

    Google Scholar
     

  • Kogikoski, S. Jr., Dutta, A. & Bald, I. Spatial separation of plasmonic hot-electron generation and a hydrodehalogenation reaction center using a DNA wire. ACS Nano 15, 20562–20573 (2021).

    Article 

    Google Scholar
     

  • Stefancu, A. et al. Fermi level equilibration at the metal–molecule interface in plasmonic systems. Nano Lett. 21, 6592–6599 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Le Ru, E. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

  • Neuman, T., Aizpurua, J. & Esteban, R. Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics, 9, 295–308 (2020).

  • Neuman, T., Esteban, R., Giedke, G., Schmidt, M. K. & Aizpurua, J. Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Phys. Rev. A 100, 043422 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, P. et al. Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO2 nanoparticles under high pressure using surface-enhanced Raman scattering. Chem. Commun. 54, 6280–6283 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X. et al. Reduced charge-transfer threshold in dye-sensitized solar cells with an Au@Ag/N3/n-TiO2 structure as revealed by surface-enhanced Raman scattering. J. Phys. Chem. C 122, 12748–12760 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lindquist, N. C., de Albuquerque, C. D. L., Sobral-Filho, R. G., Paci, I. & Brolo, A. G. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol. 14, 981–987 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Almehmadi, L. M., Curley, S. M., Tokranova, N. A., Tenenbaum, S. A. & Lednev, I. K. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci. Rep. 9, 12356 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Le Ru, E. C. & Etchegoin, P. G. Vibrational pumping and heating under SERS conditions: fact or myth? Faraday Discuss. 132, 63–75 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Kozich, V. & Werncke, W. The vibrational pumping mechanism in surface-enhanced Raman scattering: a subpicosecond time-resolved study. J. Phys. Chem. C 114, 10484–10488 (2010).

    Article 

    Google Scholar
     

  • Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    Article 

    Google Scholar
     

  • Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Fojt, J., Rossi, T. P., Kuisma, M. & Erhart, P. Hot-carrier transfer across a nanoparticle–molecule junction: the importance of orbital hybridization and level alignment. Nano Lett. 22, 8786–8792 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Huang, P. & Carter, E. A. Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter. J. Chem. Phys. 125, 084102 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Sundararaman, R., Narang, P., Jermyn, A. S., Goddard Iii, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jermyn, A. S. et al. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. 3, 075201 (2019).

    Article 

    Google Scholar
     

  • Vanzan, M., Gil, G., Castaldo, D., Nordlander, P. & Corni, S. Energy transfer to molecular adsorbates by transient hot electron spillover. Nano Lett. 23, 2719–2725 (2023).

    Article 
    ADS 

    Google Scholar
     

  • João, S. M., Jin, H. & Lischner, J. C. Atomistic theory of hot-carrier relaxation in large plasmonic nanoparticles. J. Phys. Chem. C 127, 23296–23302 (2023).

    Article 

    Google Scholar
     

  • Wu, S., Chen, Y. & Gao, S. Plasmonic photocatalysis with nonthermalized hot carriers. Phys. Rev. Lett. 129, 086801 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cushing, S. K. et al. Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure. ACS Nano 12, 7117–7126 (2018).

    Article 

    Google Scholar
     

  • Habib, A., Lubbers, N., Tretiak, S. & Nebgen, B. Machine learning models capture plasmon dynamics in Ag nanoparticles. J. Phys. Chem. A 127, 3768–3778 (2023).

    Article 

    Google Scholar
     

  • Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).

    Article 

    Google Scholar
     

  • Philpott, M. R. Effect of surface plasmons on transitions in molecules. J. Chem. Phys. 62, 1812–1817 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Liu, G. L., Long, Y.-T., Choi, Y., Kang, T. & Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 4, 1015–1017 (2007).

    Article 

    Google Scholar
     

  • Collins, S. S. E. et al. Plasmon energy transfer in hybrid nanoantennas. ACS Nano. 15, 9522–9530 (2021).

  • Vijay, S. et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single-atom catalysts. ACS Catal. 10, 7826–7835 (2020).

    Article 

    Google Scholar
     

  • Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    Article 

    Google Scholar
     

  • Chan, K. A few basic concepts in electrochemical carbon dioxide reduction. Nat. Commun. 11, 5954 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. Nat. Commun. 11, 33 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cai, C. et al. Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew. Chem. Int. Ed. 62, e202300873 (2023).

    Article 

    Google Scholar
     

  • Corson, E. R. et al. In situ ATR–SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 142, 11750–11762 (2020).

    Article 

    Google Scholar
     

  • Landaeta, E., Kadosh, N. I. & Schultz, Z. D. Mechanistic study of plasmon-assisted in situ photoelectrochemical CO2 reduction to acetate with a Ag/Cu2O nanodendrite electrode. ACS Catal. 13, 1638–1648 (2023).

    Article 

    Google Scholar
     

  • Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5, 732–736 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nelson, D. A. & Schultz, Z. D. The impact of optically rectified fields on plasmonic electrocatalysis. Faraday Discuss. 214, 465–477 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ren, W., Xu, A., Chan, K. & Hu, X. A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202214173 (2022).

    Article 

    Google Scholar
     

  • Peiris, E. et al. Plasmonic switching of the reaction pathway: visible-light irradiation varies the reactant concentration at the solid–solution interface of a gold–cobalt catalyst. Angew. Chem. Int. Ed. 58, 12032–12036 (2019).

    Article 

    Google Scholar
     

  • Han, P. et al. Promoting Ni(II) catalysis with plasmonic antennas. Chem 5, 2879–2899 (2019).

    Article 

    Google Scholar
     

  • Saalfrank, P. Photodesorption of neutrals from metal surfaces: a wave packet study. Chem. Phys. 193, 119–139 (1995).

  • Herran, M. et al. Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 6, 1205–1214 (2023).

    Article 

    Google Scholar
     

  • Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vadai, M., Angell, D. K., Hayee, F., Sytwu, K. & Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 9, 4658 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, Y. et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378, 889–893 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Maher, R. C., Galloway, C. M., Le Ru, E. C., Cohen, L. F. & Etchegoin, P. G. Vibrational pumping in surface enhanced Raman scattering (SERS). Chem. Soc. Rev. 37, 965–979 (2008).

    Article 

    Google Scholar
     

  • Otto, A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Stat. Solidi A 188, 1455–1470 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Otto, A., Akemann, W. & Pucci, A. Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS. Isr. J. Chem. 46, 307–315 (2006).


    Google Scholar
     

  • Wu, S. et al. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: Inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129, 173103 (2021).

  • Zhu, Y., Natelson, D. & Cui, L. Probing energy dissipation in molecular-scale junctions via surface enhanced Raman spectroscopy: vibrational pumping and hot carrier enhanced light emission. J. Phys. Condens. Matter 33, 134001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bayle, M. et al. Experimental investigation of the vibrational density of states and electronic excitations in metallic nanocrystals. Phys. Rev. B 89, 195402 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zangwill, A. Physics at Surfaces (Cambridge Univ. Press, 1988).

  • Avouris, P., Lyo, I. W. & Molinàs-Mata, P. STM studies of the interaction of surface state electrons on metals with steps and adsorbates. Chem. Phys. Lett. 240, 423–428 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Koch, E. E., Barth, J., Fock, J. H., Goldmann, A. & Otto, A. Surface photoemission in the 4d band from polycrystalline silver surfaces. Solid State Commun. 42, 897–901 (1982).

    Article 
    ADS 

    Google Scholar