• Morrison, A. K., Frölicher, T. L. & Sarmiento, J. L. Upwelling in the Southern Ocean. Phys. Today 68, 27 (2015).

    Article 

    Google Scholar
     

  • Sallée, J. B., Speer, K., Rintoul, S. & Wijffels, S. Southern Ocean thermocline ventilation. J. Phys. Oceanogr. 40, 509–529 (2010).

    Article 

    Google Scholar
     

  • Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Marshall, J. et al. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dyn. 44, 2287–2299 (2015).

    Article 

    Google Scholar
     

  • Gruber, N., Landschützer, P. & Lovenduski, N. S. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159–186 (2019).

    Article 

    Google Scholar
     

  • Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article 

    Google Scholar
     

  • Haine, T. W. & Hall, T. M. A generalized transport theory: water-mass composition and age. J. Phys. Oceanogr. 32, 1932–1946 (2002).

    Article 

    Google Scholar
     

  • Waugh, D. W., Hall, T. M., McNeil, B. I., Key, R. & Matear, R. J. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B 58, 376–389 (2006).

    Article 

    Google Scholar
     

  • Goodwin, P., Williams, R. G. & Ridgwell, A. Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci. 8, 29–34 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bronselaer, B. & Zanna, L. Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584, 227–233 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bourgeois, T., Goris, N., Schwinger, J. & Tjiputra, J. F. Stratification constrains future heat and carbon uptake in the Southern Ocean between 30° S and 55° S. Nat. Commun. 13, 340 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Article 

    Google Scholar
     

  • Arora, V. K. et al. Carbon concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Katavouta, A. & Williams, R. G. Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins. Biogeosciences 18, 3189–3218 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L. & Frölicher, T. L. Connecting changing ocean circulation with changing climate. J. Clim. 26, 2268–2278 (2013).

    Article 

    Google Scholar
     

  • Williams, R. G., Katavouta, A. & Roussenov, V. Regional asymmetries in ocean heat and carbon storage due to dynamic redistribution in climate model projections. J. Clim. 34, 3907–3925 (2021).

    Article 

    Google Scholar
     

  • Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Cai, W. et al. Pan-oceanic response to increasing anthropogenic aerosols: impacts on the Southern Hemisphere oceanic circulation. Geophys. Res. Lett. 33, L21707 (2006).

    Article 

    Google Scholar
     

  • Wang, H. & Wen, Y. J. Climate response to the spatial and temporal evolutions of anthropogenic aerosol forcing. Clim. Dyn. 59, 1579–1595 (2022).

    Article 

    Google Scholar
     

  • Williams, R. G., Ceppi., P., Roussenov, V., Katavouta, A. & Meijers, A. The role of the Southern Ocean in the global climate response to carbon emissions. Philisoph. Trans. A https://doi.org/10.1098/rsta.2022.0062 (2023).

  • Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article 

    Google Scholar
     

  • Lund, M. T., Myhre, G. & Samset, B. H. Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways. Atmos. Chem. Phys. 19, 13827–13839 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. R., Xie, S. P. & Talley, L. D. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Clim. 31, 7459–7479 (2018).

    Article 

    Google Scholar
     

  • Irving, D., Wijffels, S. & Church, J. Anthropogenic aerosols, greenhouse gases, and the uptake, transport, and storage of excess heat in the climate system. Geophys. Res. Lett. 46, 4894–4903 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).

    Article 

    Google Scholar
     

  • Ma, X., Liu, W., Allen, R. J., Huang, G. & Li, X. Dependence of regional ocean heat uptake on anthropogenic warming scenarios. Sci. Adv. 6, eabc0303 (2020).

    Article 

    Google Scholar
     

  • Robson, J. et al. The role of anthropogenic aerosol forcing in the 1850–1985 strengthening of the AMOC in CMIP6 historical simulations. J. Clim. 35, 6843–6863 (2022).

    Article 

    Google Scholar
     

  • Li, S., Liu, W., Allen, R. J., Shi, J. R. & Li, L. Ocean heat uptake and interbasin redistribution driven by anthropogenic aerosols and greenhouse gases. Nat. Geosci. 16, 695–703 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. R., Wijffels, S. E., Kwon, Y. O., Talley, L. D. & Gille, S. T. The competition between anthropogenic aerosol and greenhouse gas climate forcing is revealed by North Pacific water-mass changes. Sci. Adv. 9, eadh7746 (2023).

    Article 

    Google Scholar
     

  • Quaas, J. et al. Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmos. Chem. Phys. 22, 12221–12239 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bi, D. et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and Earth System simulator coupled model. J. South. Hemisph. Earth Syst. Sci. 70, 225–251 (2020).

    Article 

    Google Scholar
     

  • Ziehn, T. et al. The Australian Earth system model: ACCESS-ESM1. 5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Development of climate and Earth system models in China: past achievements and new CMIP6 results. J. Meteorol. Res. 34, 1–19 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Swart, N. C. et al. The Canadian Earth system model version 5 (CanESM5. 0.3). Geosci. Model Dev. 12, 4823–4873 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Danabasoglu, G. et al. The community Earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article 

    Google Scholar
     

  • Lin, Y. et al. Community integrated Earth system model (CIESM): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002036 (2020).

    Article 

    Google Scholar
     

  • Lovato, T. et al. CMIP6 simulations with the CMCC Earth system Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 14, e2021MS002814 (2022).

    Article 

    Google Scholar
     

  • Voldoire, A. et al. Evaluation of CMIP6 deck experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).

    Article 

    Google Scholar
     

  • Séférian, R. et al. Evaluation of CNRM Earth system model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).

    Article 

    Google Scholar
     

  • Döscher, R. et al. The EC-earth3 Earth system model for the climate model intercomparison project 6. Geosci. Model Dev. Discuss. 2021, 1–90 (2021).


    Google Scholar
     

  • Bao, Y., Song, Z. & Qiao, F. FIO-ESM version 2.0: model description and evaluation. J. Geophys. Res. Oceans 125, e2019JC016036 (2020).

    Article 

    Google Scholar
     

  • Dunne, J. P. et al. The GFDL Earth system model version 4.1 (GFDL‐ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).

    Article 

    Google Scholar
     

  • Kelley, M. et al. GISS-E2. 1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).

    Article 

    Google Scholar
     

  • Roberts, M. J. et al. Description of the resolution hierarchy of the global coupled HadGEM3-GC3. 1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 12, 4999–5028 (2019).

    Article 

    Google Scholar
     

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

    Article 

    Google Scholar
     

  • Sepulchre, P. et al. IPSL-CM5A2—an Earth system model designed for multi-millennial climate simulations. Geosci. Model Dev. 13, 3011–3053 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kawamiya, M. et al. Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC). Prog. Earth Planet Sci. 7, 64 (2020).

    Article 

    Google Scholar
     

  • Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).

    Article 

    Google Scholar
     

  • Mauritsen, T. et al. Developments in the MPI-M Earth system model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    Article 

    Google Scholar
     

  • Yukimoto, S. et al. The Meteorological Research Institute Earth system model version 2.0, MRI-ESM2. 0: description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II 97, 931–965 (2019).

    Article 

    Google Scholar
     

  • Seland, Ø. et al. Overview of the Norwegian Earth system model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sellar, A. A. et al. UKESM1: description and evaluation of the UK Earth system model. J. Adv. Model. Earth Syst. 11, 4513–4558 (2019).

    Article 

    Google Scholar
     

  • Lee, E. S. & Forthofer, R. N. Analyzing Complex Survey Data (SAGE Publications, 2006).

  • Gregory, J. M. et al. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing. Geosci. Model Dev. 9, 3993–4017 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Roussenov, V. et al. Asymmetries in the Southern Ocean contribution to global heat and carbon uptake. Zenodo https://doi.org/10.5281/zenodo.11397243 (2024).