• IPCC. Summary for Policymakers. In Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 3–24 (Cambridge Univ. Press, 2018).

  • Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    CAS 

    Google Scholar
     

  • State of Forests 2020 (Forest Europe, 2020); https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf

  • Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. Camb. Philos. Soc. 91, 760–781 (2016).

    Article 

    Google Scholar
     

  • Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bolte, A. et al. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand. J. Res. 24, 473–482 (2009).

    Article 

    Google Scholar
     

  • Spathelf, P. et al. Adaptive measures: integrating adaptive forest management and forest landscape restoration. Ann. For. Sci. 75, 55 (2018).

    Article 

    Google Scholar
     

  • Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change—is non-management an option? Ann. For. Sci. 76, 48 (2019).

  • Bastin, J. F. et al. Tree Restoration Potential in the European Union https://doi.org/10.13140/RG.2.2.24811.67368/1 (FAO and European Commission Directorate General for Environment (DG ENV), 2020).

  • Matthews, H. D. et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun. Earth Environ. 3, 65 (2022).

  • Nabuurs, G. J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

  • Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science https://doi.org/10.1126/science.aaf8957 (2016).

  • Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    Article 

    Google Scholar
     

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).

    Article 

    Google Scholar
     

  • Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).

  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article 

    Google Scholar
     

  • Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 24, 1150–1163 (2018).

    Article 

    Google Scholar
     

  • Thurm, E. A. et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430, 485–497 (2018).

    Article 

    Google Scholar
     

  • Svenning, J. C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Article 

    Google Scholar
     

  • Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).

    Article 

    Google Scholar
     

  • Frank, A. et al. Risk of genetic maladaptation due to climate change in three major European tree species. Glob. Change Biol. 23, 5358–5371 (2017).

    Article 

    Google Scholar
     

  • Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    Article 

    Google Scholar
     

  • Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, A. et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. https://doi.org/10.1111/j.1461-0248.2012.01746.x (2012).

  • Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. https://doi.org/10.1111/gcb.12181 (2013).

  • Aitken, S. N. & Bemmels, J. B. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290 (2016).

  • Pedlar, J. H. et al. Placing forestry in the assisted migration debate. Bioscience 62, 835–842 (2012).

    Article 

    Google Scholar
     

  • Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. https://doi.org/10.5849/jof.13-016 (2013).

  • McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).

    Article 

    Google Scholar
     

  • Hällfors, M. H. et al. Coming to terms with the concept of moving species threatened by climate change—a systematic review of the terminology and definitions. PLoS ONE https://doi.org/10.1371/journal.pone.0102979 (2014).

  • Fréjaville, T., Vizcaíno-Palomar, N., Fady, B., Kremer, A. & Benito Garzón, M. Range margin populations show high climate adaptation lags in European trees. Glob. Change Biol. 26, 484–495 (2020).

  • Sáenz-Romero, C. et al. Assisted migration of forest populations for adapting trees to climate change. Rev. Chapingo Ser. Cienc. 22, 303–323 (2016).

  • Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 26 (2021).

  • Gunia, K., Van Brusselen, J., Päivinen, R., Zudin, S. & Zudina, E. Forest Map of Europe (European Forest Institute, 2012).

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-fir in Central Europe. PLoS ONE 10, e0136357 (2015).

    Article 

    Google Scholar
     

  • Wang, T. et al. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Diniz-Filho, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897–906 (2009).

  • McGrath, M. J. et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences 12, 4291–4316 (2015).

    Article 

    Google Scholar
     

  • Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA 116, 25179–25185 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).

  • Mátyás, C. Adaptation lag: a general feature of natural populations (invited lecture). Paper no. 2.226. In Joint Meeting of Western Forest Genetics Association and IUFRO Working Parties, Douglas-fir, Contorta Pine, Sitka Spruce, and Abies Breeding and Genetic Resources 20–24 (Weyerhaeuser Company, 1990).

  • Leites, L. & Benito Garzón, M. Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.16711 (2023).

  • Pâques, M. J. Technical Guidelines for Genetic Conservation and use for European Larch (Larix decidua) (EUFORGEN, 2008).

  • Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Petit, R. J. et al. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2004.02410.x (2005).

  • Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article 

    Google Scholar
     

  • Kapeller, S., Dieckmann, U. & Schueler, S. Varying selection differential throughout the climatic range of Norway spruce in Central Europe. Evol. Appl. 10, 25–38 (2017).

    Article 

    Google Scholar
     

  • Müller, M., Kempen, T., Finkeldey, R. & Gailing, O. Low population differentiation but high phenotypic plasticity of European beech in Germany. Forests 11, 1354 (2020).

  • Jansson, G., Hansen, J. K., Haapanen, M., Kvaalen, H. & Steffenrem, A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. https://doi.org/10.1080/02827581.2016.1242770 (2017).

  • Milesi, P. et al. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: local adaptation and genetic basis of quantitative traits in trees. Evol. Appl. 12, 1946–1959 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Poupon, V. et al. Accelerating adaptation of forest trees to climate change using individual tree response functions. Front. Plant Sci. 12, 758221 (2021).

  • Frank, A. et al. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology 98, 211–227 (2017).

    Article 

    Google Scholar
     

  • Kapeller, S., Lexer, M. J., Geburek, T., Hiebl, J. & Schueler, S. Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. For. Ecol. Manag. 271, 46–57 (2012).

    Article 

    Google Scholar
     

  • Berlin, M. et al. Scots pine transfer effect models for growth and survival in Sweden and Finland. Silva Fenn. 50, 1562 (2016).

  • Pedlar, J. H., McKenney, D. W. & Lu, P. Critical seed transfer distances for selected tree species in eastern North America. J. Ecol. 109, 2271–2283 (2021).

    Article 

    Google Scholar
     

  • Girardin, M. P. et al. Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting. Nat. Commun. 12, 1169 (2021).

  • Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).

    Article 

    Google Scholar
     

  • Brus, D. J. et al. Statistical mapping of tree species over Europe. Eur. J. Res. 131, 145–157 (2012).

    Article 

    Google Scholar
     

  • Pâques, L. E. (ed.) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives (Springer, 2013).

  • Jansen, S. & Geburek, T. Historic translocations of European larch (Larix decidua Mill.) genetic resources across Europe—a review from the 17th until the mid-20th century. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2016.08.007 (2016).

  • Jansen, S., Konrad, H. & Geburek, T. The extent of historic translocation of Norway spruce forest reproductive material in Europe. Ann. For. Sci. 74, 56 (2017).

  • Benito Garzón, M. & Vizcaíno-Palomar, N. in Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin (eds Ne’eman, G. & Yagil Osem, Y.) 71–82 (Springer, 2021).

  • Benito-Garzón, M. & Fernández-Manjarrés, J. F. Testing scenarios for assisted migration of forest trees in Europe. New For. https://doi.org/10.1007/s11056-015-9481-9 (2015).

  • Hlásny, T. et al. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts and management implications. For. Ecol. Manag. 490, 119075 (2021).

  • Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).

  • George, J. P. et al. Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits. Agric. For. Meteorol. 214–215, 430–443 (2015).

  • Stojnić, S. et al. Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiol. 38, 173–185 (2018).

    Article 

    Google Scholar
     

  • Bansal, S., Harrington, C. A., Gould, P. J. & St.Clair, J. B. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob. Change Biol. 21, 947–958 (2015).

    Article 

    Google Scholar
     

  • George, J. P. et al. Genetic variation, phenotypic stability and repeatability of drought response in European larch throughout 50 years in a common garden experiment. Tree Physiol. 37, 33–46 (2017).


    Google Scholar
     

  • Trujillo-Moya, C. et al. Drought sensitivity of Norway Spruce at the species’ warmest fringe: quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 8, 1225–1245 (2018).

  • Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).

    Article 

    Google Scholar
     

  • Vospernik, S. Basal area increment models accounting for climate and mixture for Austrian tree species. For. Ecol. Manag. 480, 118725 (2021).

  • Pretzsch, H., Forrester, D. I. & Rötzer, T. Representation of species mixing in forest growth models: a review and perspective. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2015.06.044 (2015).

  • Grummer, J. A. et al. The immediate costs and long-term benefits of assisted gene flow in large populations. Conserv. Biol. 36, e13911 (2022).

  • Kranabetter, J. M., Stoehr, M., & O’Neill, G. A. Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. New Phytol. 206, 1135–1144 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Winder, R. S., Kranabetter, J. M. & Pedlar, J. H. in Soils and Landscape Restoration (eds Stanturf, J. A. & Callaham, Mac A.) 275–297 (Academic Press, 2021).

  • Klenk, N. L. The development of assisted migration policy in Canada: an analysis of the politics of composing future forests. Land Use Policy 44, 101–109 (2015).

    Article 

    Google Scholar
     

  • Pelai, R., Hagerman, S. M. & Kozak, R. Whose expertise counts? Assisted migration and the politics of knowledge in British Columbia’s public forests. Land Use Policy 103, 105296 (2021).

  • Rodríguez-Labajos, B. Climate change, ecosystem services and costs of action and inaction: scoping the interface. WIRES Clim. Change https://doi.org/10.1002/wcc.247 (2013).

  • Sykes, M. T., Prentice, I. C. & Cramer, W. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr. 23, 203–233 (1996).

    Article 

    Google Scholar
     

  • Mauri, A. et al. Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Glob. Environ. Change 80, 102676 (2023).

  • St Clair, J. B. & Howe, G. T. Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Glob. Change Biol. 13, 1441–1454 (2007).

    Article 

    Google Scholar
     

  • Hornsey, M. J. & Fielding, K. S. Understanding (and reducing) inaction on climate change. Soc. Issues Policy Rev. 14, 3–35 (2020).

    Article 

    Google Scholar
     

  • Kracke, I., Essl, F., Zulka, K. P. & Schindler, S. Risks and opportunities of assisted colonization:the perspectives of experts. Nat. Conserv. 45, 63–84 (2021).

    Article 

    Google Scholar
     

  • Schueler, S. et al. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Change Biol. 20, 1498–1511 (2014).

    Article 

    Google Scholar
     

  • Petit-Cailleux, C. et al. Tree mortality risks under climate change in Europe: assessment of silviculture practices and genetic conservation networks. Front. Ecol. Evol. 9, 706414 (2021).

  • Sha, Z. et al. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 3, 8 (2022).

  • Fit for 55: Parliament Agrees to Higher EU Carbon Sink Ambitions by 2030 (European Parliament, 2022); https://www.europarl.europa.eu/news/en/press-room/20220603IPR32133/fit-for-55-parliament-agrees-to-higher-eu-carbon-sink-ambitions-by-2030

  • Assisted translocation of tree populations preserves the European forest carbon sink in climate change. Figshare https://figshare.com/s/98e405d56bb789b08cb0 (2022).

  • Chakraborty, D., Dobor, L., Zolles, A., Hlásny, T. & Schueler, S. High-resolution gridded climate data for Europe based on bias-corrected EURO-CORDEX: the ECLIPS-2.0 dataset. Zenodo 10.5281/zenodo.3952158 (2020).