IPCC. Summary for Policymakers. In Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 3–24 (Cambridge Univ. Press, 2018).
Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
State of Forests 2020 (Forest Europe, 2020); https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).
Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. Camb. Philos. Soc. 91, 760–781 (2016).
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).
Bolte, A. et al. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand. J. Res. 24, 473–482 (2009).
Spathelf, P. et al. Adaptive measures: integrating adaptive forest management and forest landscape restoration. Ann. For. Sci. 75, 55 (2018).
Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).
Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change—is non-management an option? Ann. For. Sci. 76, 48 (2019).
Bastin, J. F. et al. Tree Restoration Potential in the European Union https://doi.org/10.13140/RG.2.2.24811.67368/1 (FAO and European Commission Directorate General for Environment (DG ENV), 2020).
Matthews, H. D. et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun. Earth Environ. 3, 65 (2022).
Nabuurs, G. J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).
Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science https://doi.org/10.1126/science.aaf8957 (2016).
Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).
Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).
Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 24, 1150–1163 (2018).
Thurm, E. A. et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430, 485–497 (2018).
Svenning, J. C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).
Frank, A. et al. Risk of genetic maladaptation due to climate change in three major European tree species. Glob. Change Biol. 23, 5358–5371 (2017).
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).
Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).
Kremer, A. et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. https://doi.org/10.1111/j.1461-0248.2012.01746.x (2012).
Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. https://doi.org/10.1111/gcb.12181 (2013).
Aitken, S. N. & Bemmels, J. B. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290 (2016).
Pedlar, J. H. et al. Placing forestry in the assisted migration debate. Bioscience 62, 835–842 (2012).
Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. https://doi.org/10.5849/jof.13-016 (2013).
McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).
Hällfors, M. H. et al. Coming to terms with the concept of moving species threatened by climate change—a systematic review of the terminology and definitions. PLoS ONE https://doi.org/10.1371/journal.pone.0102979 (2014).
Fréjaville, T., Vizcaíno-Palomar, N., Fady, B., Kremer, A. & Benito Garzón, M. Range margin populations show high climate adaptation lags in European trees. Glob. Change Biol. 26, 484–495 (2020).
Sáenz-Romero, C. et al. Assisted migration of forest populations for adapting trees to climate change. Rev. Chapingo Ser. Cienc. 22, 303–323 (2016).
Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 26 (2021).
Gunia, K., Van Brusselen, J., Päivinen, R., Zudin, S. & Zudina, E. Forest Map of Europe (European Forest Institute, 2012).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-fir in Central Europe. PLoS ONE 10, e0136357 (2015).
Wang, T. et al. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Diniz-Filho, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897–906 (2009).
McGrath, M. J. et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences 12, 4291–4316 (2015).
Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA 116, 25179–25185 (2019).
Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).
Mátyás, C. Adaptation lag: a general feature of natural populations (invited lecture). Paper no. 2.226. In Joint Meeting of Western Forest Genetics Association and IUFRO Working Parties, Douglas-fir, Contorta Pine, Sitka Spruce, and Abies Breeding and Genetic Resources 20–24 (Weyerhaeuser Company, 1990).
Leites, L. & Benito Garzón, M. Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.16711 (2023).
Pâques, M. J. Technical Guidelines for Genetic Conservation and use for European Larch (Larix decidua) (EUFORGEN, 2008).
Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).
Petit, R. J. et al. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2004.02410.x (2005).
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
Kapeller, S., Dieckmann, U. & Schueler, S. Varying selection differential throughout the climatic range of Norway spruce in Central Europe. Evol. Appl. 10, 25–38 (2017).
Müller, M., Kempen, T., Finkeldey, R. & Gailing, O. Low population differentiation but high phenotypic plasticity of European beech in Germany. Forests 11, 1354 (2020).
Jansson, G., Hansen, J. K., Haapanen, M., Kvaalen, H. & Steffenrem, A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. https://doi.org/10.1080/02827581.2016.1242770 (2017).
Milesi, P. et al. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: local adaptation and genetic basis of quantitative traits in trees. Evol. Appl. 12, 1946–1959 (2019).
Poupon, V. et al. Accelerating adaptation of forest trees to climate change using individual tree response functions. Front. Plant Sci. 12, 758221 (2021).
Frank, A. et al. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology 98, 211–227 (2017).
Kapeller, S., Lexer, M. J., Geburek, T., Hiebl, J. & Schueler, S. Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. For. Ecol. Manag. 271, 46–57 (2012).
Berlin, M. et al. Scots pine transfer effect models for growth and survival in Sweden and Finland. Silva Fenn. 50, 1562 (2016).
Pedlar, J. H., McKenney, D. W. & Lu, P. Critical seed transfer distances for selected tree species in eastern North America. J. Ecol. 109, 2271–2283 (2021).
Girardin, M. P. et al. Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting. Nat. Commun. 12, 1169 (2021).
Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).
Brus, D. J. et al. Statistical mapping of tree species over Europe. Eur. J. Res. 131, 145–157 (2012).
Pâques, L. E. (ed.) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives (Springer, 2013).
Jansen, S. & Geburek, T. Historic translocations of European larch (Larix decidua Mill.) genetic resources across Europe—a review from the 17th until the mid-20th century. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2016.08.007 (2016).
Jansen, S., Konrad, H. & Geburek, T. The extent of historic translocation of Norway spruce forest reproductive material in Europe. Ann. For. Sci. 74, 56 (2017).
Benito Garzón, M. & Vizcaíno-Palomar, N. in Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin (eds Ne’eman, G. & Yagil Osem, Y.) 71–82 (Springer, 2021).
Benito-Garzón, M. & Fernández-Manjarrés, J. F. Testing scenarios for assisted migration of forest trees in Europe. New For. https://doi.org/10.1007/s11056-015-9481-9 (2015).
Hlásny, T. et al. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts and management implications. For. Ecol. Manag. 490, 119075 (2021).
Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).
George, J. P. et al. Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits. Agric. For. Meteorol. 214–215, 430–443 (2015).
Stojnić, S. et al. Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiol. 38, 173–185 (2018).
Bansal, S., Harrington, C. A., Gould, P. J. & St.Clair, J. B. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob. Change Biol. 21, 947–958 (2015).
George, J. P. et al. Genetic variation, phenotypic stability and repeatability of drought response in European larch throughout 50 years in a common garden experiment. Tree Physiol. 37, 33–46 (2017).
Trujillo-Moya, C. et al. Drought sensitivity of Norway Spruce at the species’ warmest fringe: quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 8, 1225–1245 (2018).
Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).
Vospernik, S. Basal area increment models accounting for climate and mixture for Austrian tree species. For. Ecol. Manag. 480, 118725 (2021).
Pretzsch, H., Forrester, D. I. & Rötzer, T. Representation of species mixing in forest growth models: a review and perspective. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2015.06.044 (2015).
Grummer, J. A. et al. The immediate costs and long-term benefits of assisted gene flow in large populations. Conserv. Biol. 36, e13911 (2022).
Kranabetter, J. M., Stoehr, M., & O’Neill, G. A. Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. New Phytol. 206, 1135–1144 (2015).
Winder, R. S., Kranabetter, J. M. & Pedlar, J. H. in Soils and Landscape Restoration (eds Stanturf, J. A. & Callaham, Mac A.) 275–297 (Academic Press, 2021).
Klenk, N. L. The development of assisted migration policy in Canada: an analysis of the politics of composing future forests. Land Use Policy 44, 101–109 (2015).
Pelai, R., Hagerman, S. M. & Kozak, R. Whose expertise counts? Assisted migration and the politics of knowledge in British Columbia’s public forests. Land Use Policy 103, 105296 (2021).
Rodríguez-Labajos, B. Climate change, ecosystem services and costs of action and inaction: scoping the interface. WIRES Clim. Change https://doi.org/10.1002/wcc.247 (2013).
Sykes, M. T., Prentice, I. C. & Cramer, W. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr. 23, 203–233 (1996).
Mauri, A. et al. Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Glob. Environ. Change 80, 102676 (2023).
St Clair, J. B. & Howe, G. T. Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Glob. Change Biol. 13, 1441–1454 (2007).
Hornsey, M. J. & Fielding, K. S. Understanding (and reducing) inaction on climate change. Soc. Issues Policy Rev. 14, 3–35 (2020).
Kracke, I., Essl, F., Zulka, K. P. & Schindler, S. Risks and opportunities of assisted colonization:the perspectives of experts. Nat. Conserv. 45, 63–84 (2021).
Schueler, S. et al. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Change Biol. 20, 1498–1511 (2014).
Petit-Cailleux, C. et al. Tree mortality risks under climate change in Europe: assessment of silviculture practices and genetic conservation networks. Front. Ecol. Evol. 9, 706414 (2021).
Sha, Z. et al. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 3, 8 (2022).
Fit for 55: Parliament Agrees to Higher EU Carbon Sink Ambitions by 2030 (European Parliament, 2022); https://www.europarl.europa.eu/news/en/press-room/20220603IPR32133/fit-for-55-parliament-agrees-to-higher-eu-carbon-sink-ambitions-by-2030
Assisted translocation of tree populations preserves the European forest carbon sink in climate change. Figshare https://figshare.com/s/98e405d56bb789b08cb0 (2022).
Chakraborty, D., Dobor, L., Zolles, A., Hlásny, T. & Schueler, S. High-resolution gridded climate data for Europe based on bias-corrected EURO-CORDEX: the ECLIPS-2.0 dataset. Zenodo 10.5281/zenodo.3952158 (2020).